74 research outputs found

    A New Approach to Numerical Quantum Field Theory

    Full text link
    In this note we present a new numerical method for solving Lattice Quantum Field Theory. This Source Galerkin Method is fundamentally different in concept and application from Monte Carlo based methods which have been the primary mode of numerical solution in Quantum Field Theory. Source Galerkin is not probabilistic and treats fermions and bosons in an equivalent manner.Comment: 10 pages, LaTeX, BROWN-HET-908([email protected]), ([email protected]), ([email protected]

    Source Galerkin Calculations in Scalar Field Theory

    Get PDF
    In this paper, we extend previous work on scalar Ď•4\phi^4 theory using the Source Galerkin method. This approach is based on finding solutions Z[J]Z[J] to the lattice functional equations for field theories in the presence of an external source JJ. Using polynomial expansions for the generating functional ZZ, we calculate propagators and mass-gaps for a number of systems. These calculations are straightforward to perform and are executed rapidly compared to Monte Carlo. The bulk of the computation involves a single matrix inversion. The use of polynomial expansions illustrates in a clear and simple way the ideas of the Source Galerkin method. But at the same time, this choice has serious limitations. Even after exploiting symmetries, the size of calculations become prohibitive except for small systems. The calculations in this paper were made on a workstation of modest power using a fourth order polynomial expansion for lattices of size 828^2,434^3,242^4 in 2D2D, 3D3D, and 4D4D. In addition, we present an alternative to the Galerkin procedure that results in sparse matrices to invert.Comment: 31 pages, latex, figures separat

    New Numerical Method for Fermion Field Theory

    Get PDF
    A new deterministic, numerical method to solve fermion field theories is presented. This approach is based on finding solutions Z[J]Z[J] to the lattice functional equations for field theories in the presence of an external source JJ. Using Grassmann polynomial expansions for the generating functional ZZ, we calculate propagators for systems of interacting fermions. These calculations are straightforward to perform and are executed rapidly compared to Monte Carlo. The bulk of the computation involves a single matrix inversion. Because it is not based on a statistical technique, it does not have many of the difficulties often encountered when simulating fermions. Since no determinant is ever calculated, solutions to problems with dynamical fermions are handled more easily. This approach is very flexible, and can be taylored to specific problems based on convenience and computational constraints. We present simple examples to illustrate the method; more general schemes are desirable for more complicated systems.Comment: 24 pages, latex, figures separat

    Numerical Quantum Field Theory on the Continuum and a New Look at Perturbation Theory

    Get PDF
    The Source Galerkin method finds approximate solutions to the functional differential equations of field theories in the presence of external sources. While developing this process, it was recognized that approximations of the spectral representations of the Green's functions by Sinc function expansions are an extremely powerful calculative tool. Specifically, this understanding makes it not only possible to apply the Source Galerkin method to higher dimensional field theories, but also leads to a new approach to perturbation theory calculations in scalar and fermionic field theories. This report summarizes the methodologies for solving quantum field theories with the Source Galerkin method and for performing perturbation theory calculations using Sinc approximations.Comment: Lattice2001(theorydevelop

    Dilaton as the Higgs boson

    Full text link
    We propose a model where the role of the electroweak Higgs field is played by the dilaton. The model contains terms which explicitly violate gauge invariance, however it is shown that this violation is fictitious, so that the model is a consistent low energy effective theory. In the simplest version of the idea the resulting low energy effective theory is the same as the top mode standard model.Comment: 6 pages, v2 with expanded discussio

    Alternative Numerical Techniques

    Full text link
    Two new approaches to numerical QFT are presented.Comment: Lattice2002(theoretical), 3 page

    Charmed Strange Pentaquarks in the Large NcN_c Limit

    Get PDF
    The properties of pentaquarks containing a heavy anti-quark and strange quarks are studied in the bound state picture. In the flavor SU(3) limit, there are many pentaquark states with the same binding energy. When the SU(3) symmetry breaking effects are included, however, three states become particularly stable due to a ``Gell-Mann--Okubo mechanism''. They are the Qˉsuud\bar Qsuud and Qˉsudd\bar Qsudd states discussed by Lipkin, and a a previously unstudied Qˉssud\bar Qssud state. These states will have JP=12+J^P={1\over2}^+ and their masses are estimated. These states, if exist, may be seen in experiments in the near future.Comment: 12 pages in REVTeX, no figure

    A Supersymmetric Stueckelberg U(1) Extension of the MSSM

    Full text link
    A Stueckelberg extension of the MSSM with only one abelian vector and one chiral superfield as an alternative to an abelian extension with Higgs scalars is presented. The bosonic sector contains a new gauge boson Z' which is a sharp resonance, and a new CP-even scalar, which combines with the MSSM Higgs bosons to produce three neutral CP-even massive states. The neutral fermionic sector has two additional fermions which mix with the four MSSM neutralinos to produce an extended 6x6 neutralino mass matrix. For the case when the LSP is composed mostly of the Stueckelberg fermions, the LSP of the MSSM will be unstable, which leads to exotic decays of sparticles with many leptons in final states. Prospects for supersymmetry searches and for dark matter are discussed.Comment: 10 page

    Physical Unitarity for Massive Non-abelian Gauge Theories in the Landau Gauge: Stueckelberg and Higgs

    Get PDF
    We discuss the problem of unitarity for Yang-Mills theory in the Landau gauge with a mass term a la Stueckelberg. We assume that the theory (non-renormalizable) makes sense in some subtraction scheme (in particular the Slavnov-Taylor identities should be respected!) and we devote the paper to the study of the space of the unphysical modes. We find that the theory is unitary only under the hypothesis that the 1-PI two-point function of the vector mesons has no poles (at p^2=0). This normalization condition might be rather crucial in the very definition of the theory. With all these provisos the theory is unitary. The proof of unitarity is given both in a form that allows a direct transcription in terms of Feynman amplitudes (cutting rules) and in the operatorial form. The same arguments and conclusions apply verbatim to the case of non-abelian gauge theories where the mass of the vector meson is generated via Higgs mechanism. To the best of our knowledge, there is no mention in the literature on the necessary condition implied by physical unitarity.Comment: References added. 22 pages. Final version to appear in the journa

    Experimental Constraints on Heavy Fermions in Higgsless Models

    Full text link
    Using an effective Lagrangian approach we analyze a generic Higgsless model with composite heavy fermions, transforming as SU(2)_{L+R} Doublets. Assuming that the Standard Model fermions acquire mass through mixing with the new heavy fermions, we constrain the free parameters of the effective Lagrangian studying Flavour Changing Neutral Current processes. In so doing we obtain bounds that can be applied to a wide range of models characterized by the same fermion mixing hypothesis.Comment: 23 pages, 10 figure
    • …
    corecore